Experimental Evidence of Black Holes

School on Particle Physics, Gravity and Cosmology

Dubrovnik 2006 September 1st

Andreas Müller

Max-Planck-Institute for Extraterrestrial Physics Garching, Germany amueller@mpe.mpg.de

Plan of the talk

- Black hole basics
- Stellar-mass BHs
- Active galactic nuclei (AGN)
- Accretion onto BHs
- Ray tracing techniques
- Detection methods
- Probing BH spin
- What do we observe?

Black hole basics

Schwarzschild vs. Kerr

Kerr solution

- Roy P. Kerr (1963)
- in Boyer-Lindquist-Form (1967)

$$ds^2 = -\alpha^2 dt^2 + \tilde{\omega}^2 (d\phi - \omega dt)^2 + \rho^2 / \Delta \ dr^2 + \rho^2 d\theta^2$$

$$\alpha = \frac{\rho\sqrt{\Delta}}{\Sigma} \qquad (G = c = 1)$$

$$\Delta = r^2 - 2Mr + a^2$$

$$\rho^2 = r^2 + a^2 \cos^2 \theta$$

$$\Sigma^2 = (r^2 + a^2)^2 - a^2 \Delta \sin^2 \theta$$

$$\omega = \frac{2aMr}{\Sigma^2}$$

$$\tilde{\omega} = \frac{\Sigma}{\rho} \sin \theta \qquad \text{black hole mass } M$$
spin parameter a

lapse function delta potential generalized radius sigma potential

frame-dragging frequency

cylindrical radius

Black Hole mass scale

TeV (particle-like): 1000 protons ~ 10⁻²¹ g

10¹⁸ g ~ mountain mass

primordial:

stellar:

intermediate-mass: 100...1000 000 M_{\odot}

supermassive: 1000 000...10 000 000 000 M_•

Summer School Dubrovnik 2006

Andreas Müller (MPE Garching)

images: Chandra, HST, NASA

6

Andreas Müller (MPE Garching)

Gravitational collapse of stars

Summer School Dubrovnik 2006

Andreas Müller (MPE Garching)

X-ray binary Cyg X-1

Sketch from Chandra Website $M_{BH} \sim 10 M_{\odot}$ D ~ 2 kpc Observation: Integral, ESA, Beckmann et al. 2003

Candidate η **Carinae**

- Southern sky: Carina
- Super star M >100 M_☉
- distance: 7500 Lj
- Luminous Blue Variable (LBV)
- Gigantic stellar explosion: hypernova
- $E \sim 10^{53} \text{ erg} = 10...100 \text{ x } \text{E}_{\text{SN}}$
- expected relic object: stellar black hole

Hubble space telescope 1996

Gamma ray bursts (GRBs)

Animations from Swift website

I) short duration

(0.01s < t < 2s) merging compact objects e.g. NS-NS

II) long duration

(2s < t < 1000s) collapse of a massive star

GRBs: forming black holes caught in the act! isotropic distribution over sky – cosmological origin

Summer School Dubrovnik 2006

Andreas Müller (MPE Garching)

Anisotropic fireball model for GRBs

Model established by Meszaros & Rees 1993, 1997; Paczynski & Rhoads 1993

Summer School Dubrovnik 2006

Andreas Müller (MPE Garching)

GRB observation – Example

- GRB030227
- t ~ 20 s
- E_γ ~ 20 200 keV
- X-ray afterglow 8 hr after prompt emission
- Optical afterglow 12 hr after prompt emission

observation: Integral, ESA, Beckmann et al. 2003

Active galactic nuclei (AGN)

Accretion onto black holes

Eddington's argument

$$L_{\rm Edd} = \frac{4\pi G M \,\mathrm{m_p}c}{\sigma_{\rm T}} \approx 1.3 \times 10^{46} \,\mathrm{erg \, s^{-1}} \, \left(\frac{M}{10^8 \,\mathrm{M_\odot}}\right)$$

$$\dot{M}_{\rm Edd} \simeq 20 \,{\rm M}_{\odot} \,{\rm yr}^{-1} \,\left(\frac{0.1}{\epsilon} \frac{L}{10^{47} \,{\rm erg \, s}^{-1}}\right)$$

- observed luminosity hints for BH mass
- accretion rate related to luminosity
- Super-Eddington accretion possible e.g. in disk accretion

Jet launching: Need for Kerr

- Supercomputer simulations: nonradiative, ideal general relativistic magneto-hydrodynamics
- Poynting flux from rapidly <u>spinning</u> BH drives ,funnel-wall' outflow!
- becomes > 10% restmass accretion rate at high spins
- however outflow has $\Gamma_{sim} \sim 2$ only whereas $\Gamma_{obs} \sim 10$

Krolik et al. 2004

Ray tracing techniques

Kerr ray tracing - render disk images

i = 60° a = 0.99 M r_{in} = r_{H} r_{out} = 30.0 r_{g}

Keplerian kinematics

Müller, diploma thesis 2000

- Doppler effect distorted by beaming (SR) and gravitational redshift (GR)
- fully relativistic generalized Doppler factor
- effects influence <u>any emission</u> in black hole systems!

Kerr ray tracing

Event horizon, Black hole

Beaming spot

Computer simulation of rotating thin gas disk Müller PhD 2004

Kinematical methods

Hightech in Atacama desert

- four 8m-telescopes on 2635m mountain, optical and near-infrared
- interferometry ⇒ resolving power comparable to space telescope (0.05" to mas! Full moon / 40000)

Summer School Dubrovnik 2006

Andreas Müller (MPE Garching)

kinematical

Stellar Orbits at Sgr A*

- probe stellar motion of stars in NIR
- S stars
- Keplerian laws:
 M = 3.6 x 10⁶ M_☉
- Genzel group MPE: Eckart et al. 1992
 Schödel et al. 2002
 Eisenhauer et al. 2005
- Ghez et al. 1998, 2000, 2003

kinematical

M-\sigma relation

- tight correlations between black hole and surrounding spheroid
- Magorrian et al. 1998
- Hähnelt & Kauffmann 2000
- Tremaine et al. 2002 —
- Ferrarese & Merritt 2002
- conflicts with M-L_V
- Lauer et al. astro-ph/0606739
- curved M-σ, brightest cluster galaxies: low σ for their high L
- Wyithe 2006

Other kinematical methods

- QPOs at microquasars
- Abramowicz et al. 2001
- Aschenbach et al. 2004
- Flares (NIR + X at Sgr A*)
- Genzel et al. 2003
- Aschenbach et al. 2004
- reverberation mapping
 > optical
 - Peterson et al.
 - ≻X-rays
 - Reynolds et al.

Obscurative methods

obscura, Latin: darkness

Measurements of Black spot

Kerr ray tracing:

a/M = 0.1 $i = 40^{\circ}$ $r_{in} = r_{H}^{+} = 1.995 r_{g}$ $r_{out} = 30.0 r_{g}$ $R_{trunc} = 6.0 r_{g}$ Kepler rotation + radial drift truncated emissivity

Müller & Camenzind, A&A 2004

Candidate: Sgr A*

$$\theta_{\rm BH} = 2 \arctan \left(R_{\rm S}/d \right)$$

$$\simeq 2 R_{\rm S}/d$$

$$\simeq 39.4 \times \left(\frac{M}{10^6 \,\mathrm{M}_{\odot}} \right) \times \left(\frac{1 \,\mathrm{kpc}}{d} \right) \,\mu\mathrm{as}$$

- best BH candidates for obscurative: Sgr A*, M87*
 - r 187* Baganoff et al. 2003 Chandra
- Krichbaum et al. 2006
- Takahashi 2004
- Falcke et al. 2000
- Bardeen 1970ies

Spot depends on orientation & spin

Müller PhD 2004

- gravitational redshift causes BH main characteristic
- black spot is smaller if disk is present (here) as cp. to non-disk case
- inclination and spin deform shape of the event horizont (spherical vs. ellipsoidal)

An analogue

- solar X-rays are scattered of the Moon
- high S/N: shadow of the moon in X-rays detected as immersed in bright XRB
- this is really a shadow
- Schmitt et al. 1991
- similar: isolated BHs immersed into CMB
- Carter 2006

Spectro-relativistic methods

Broad Iron K lines

- relativistically broadened emission lines near BHs
- dominant: Fe Kα at 6.4 keV rest frame energy
- observed in AGN, and GBH with ASCA, RXTE, XMM, Chandra, Suzaku
- precondition: primary HX source illuminates cold accretion disk
- probe {*M*, *a*}

A Fe Line Gallery

observations: subtract power law and fit relativistic broad disk line

here: ray tracing simulations

Gravitational redshift

Müller & Wold 2006, A&A in press, astro-ph/0607050

Redshift gradient

 relativistic emission lines from Keplerian rotating rings are characterised by line core redshift z_{core}

$$g_{\rm core} = \frac{\sum_i g_{\rm i} F_{\rm i}}{\sum_i F_{\rm i}}$$

- gravitational redshift decays linearly in far-field
- probe {M, a, i}
- Mrk 110: opt. BLR lines
- suggests multi-wavelength search for gravitationally redshifted features

Müller & Wold 2006 A&A in press astro-ph/0607050

Hightech in Earth orbit

X-ray range 0.5 - 10 keV

Summer School Dubrovnik 2006

Cosmic X-ray Background

- stacked relativistic broad emission lines from ~100 active SMBHs in X-ray background
- Fe Kα feature at 6-7 keV for AGN type-1 and 2

Streblyanska et al. 2005 Brusa et al. 2005 Müller & Hasinger 2005

Aberrative methods

aberrative

Lensing of orbital shapes

- use relativistic light bending effects (lensing)
- right: tight intrinsically circular orbits around a Kerr BH
- deformation of classical Kepler ellipses to skewed shapes
- dependence on inclination of orbital plane
- pioneering papers:
- Luminet 1972
- Cunningham & Bardeen 1973
- also microlensing (indirect method using light curve)

Lensing at extreme Kerr

Appearance of circular orbits

higher order images neglected

aberrative

Schwarzschild vs. Kerr

•
$$r_{orb} = 6 r_g$$

i = 30°

- lensed orbits:
 discriminate Schwarzschild (symmetric) from Kerr i = 60° (asymmetric)
- spin breaks mirror symmetry

Accretive methods

accretive

AGN activity – M87

- Eddington's argument: use luminosity to estimate BH mass
- $M_{BH} \sim 3 \times 10^9 M_{\odot}$
- D ~ 16 Mpc
- Outflow drivers:
- relativistic AGN-Jets hint for active rotating SMBH
- Blandford & Znajek 1977
- alternative: rotating MHD disk
- Blandford & Payne 1982
 Summer School Dubrovnik 2006

AGN activity – Cyg A

- $M_{BH} \sim 2.5 \times 10^9 M_{\odot}$
- D ~ 230 Mpc

Eruptive methods

eruptive

Stellar tidal disruption

doom

app

tidal

- accretion burst event: X-ray flare
- L_X decay with t^{-5/3}
- ROSAT, Chandra
- detected in 2004 at RX J1242-1119, z = 0.05
- happens every 10⁴ yrs
- tidal radius:

$$R_{\rm T} = 1.1 \, {\rm R}_{\rm S} \times \left(\frac{M}{10^8 \, {\rm M}_{\odot}} \right)^{-2/3}$$

- Komossa et al. 2004
- Halpern et al. 2004

Other eruptive methods

- GRBs
- flares
 - see kinematical methods
- Hawking radiation
 - ➤ tough job for cosmic BHs
 - > 2008 in reach with particle accelerators (LHC)?

Gravitational-wave induced method

- characteristic GW spectrum and GW frequencies e.g.
 BH-BH merger in 10 to 500 Hz range
- chirp, inspiral, ringdown

Courtesy: W. Benger, MPI for Gravitational Physics

- Is there a chance to prove event horizons with GW signals?
- Is there a chance to probe BH *spin* with GW spectra?
- Yes, indeed! (Berti & Cardoso 2006, gr-qc/0605101)

Most confidental methods

- need to come close to BH to probe ergosphere and event horizon, r < R_s
- strongest clues for BH existence from:
 - ➢ GRBs (no alternative according to current knowledge)
 - stellar orbits (i.e. Galactic Centre)
 - Quasi-periodic Oscillations (QPOs)
 - broad iron K lines

Black hole spin

Probing BH spin

- Study orbital and other characteristic frequencies
 - > QPOs
- Coupling of r_{ms} and a
 - > widely used in broad line business
 - \succ flare orbiting at r_{ms}
- BH growth argument (e.g. Shapiro 2005)
 - \succ spin-up by accretion and merging, a ~ 0.9....0.99
- Jet launching argument
 - ➢ GRMHD in the Kerr geometry
- Proximity required: steep gradient of frame-dragging frequency: ω ~ r⁻³

What do we observe?

What do we observe?

- it is massive
- it is compact
- it is dark
- neither event horizon,
- nor curvature singularity observed
- can we do?

Black Hole Observability

- dissipation argument to distinguish NS from BH
- ADAF argument:
 BHs are dimmer

- g ~ 0 suppresses any electromagnetic signal
- testing BHs vs. BH alternatives by em impossible

- claim for evidence
- Narayan et al. 1997
- Remillard et al. 2005
- Broderick & Narayan 2006

- claim for non-observability
- Abramowicz et al. 2002

Static black hole alternatives

only anisotropic version is stable (Cattoen et al. 2005)

Andreas Müller (MPE Garching)

Curvature invariants

$$R_{\kappa\lambda\mu\nu} R^{\kappa\lambda\mu\nu} = 48 \frac{M^2}{r^6} \frac{1 - (a/r)^2 \cos^2\theta}{\left(1 + (a/r)^2 \cos^2\theta\right)^6} \left(1 - 14 (a/r)^2 \cos^2\theta + (a/r)^4 \cos^4\theta\right)$$

- Kretschmann scalar
- ring singularity

 current observations (fits with iron K lines) reach r_{min} ~ few r_g

The LQG back bounce

- Wheeler: emergence of true singularities signals breakdown of classical GR
- Loop effects: negative pressure develops in gravitational collapse to avoid singularity
- Goswami et al. 2006
- Bojowald et al. 2005

evolution of area radius and energy density (inset)

Conclusions

Observations hint for massive dark objects (MDOs)

Event horizons and singularities are **NOT** yet proven

Kerr black hole currently best choice

Be open-minded for new Gravity issues!

2008: mini BHs at LHC?

Einstein & Holes

"Why socks? They only get holes!"

photo: http://www.physics.ox.ac.uk/users/foster/Public/