Westfälische Volkssternwarte und Planetarium Recklinghausen 17.11.2005

Einsteins Universum

Das Geheimnis der Dunklen Energie

Übersicht

- Zeitreise zum Ursprung
- Historische Meilensteine
- Grundlagen der Kosmologie
- Beobachtung
- Formen Dunkler Energie
- Zukunft des Universums

Zeitreise zum Ursprung

Reise zum Urknall

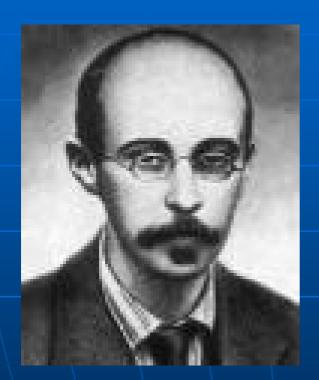
WMAP Website, http://map.gsfc.nasa.gov/

Zeitreise zum Ursprung

"Ein Blick an den Himmel ist eine Zeitreise"

Historische Meilensteine

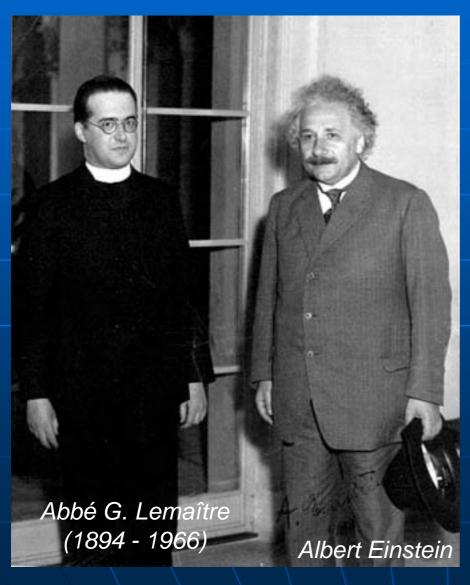
Kosmologische Konstante



$$\mathbf{G}_{\mu\nu} - \Lambda \,\mathbf{g}_{\mu\nu} = \frac{8\pi G}{c^4} \,\mathbf{T}_{\mu\nu}$$

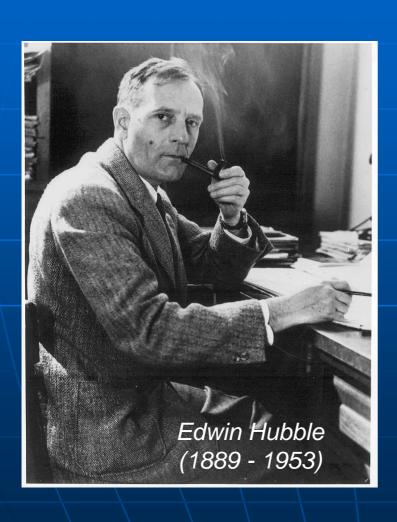
- Feldgleichungen der Allgemeinen Relativitätstheorie
- 1917: Λ-Term
- statisches Universum
- 1931: "Einsteins Eselei"

Bildquelle: Wikipedia


Bewegter Raum

Aleksandr A. Friedmann (1888 - 1925)

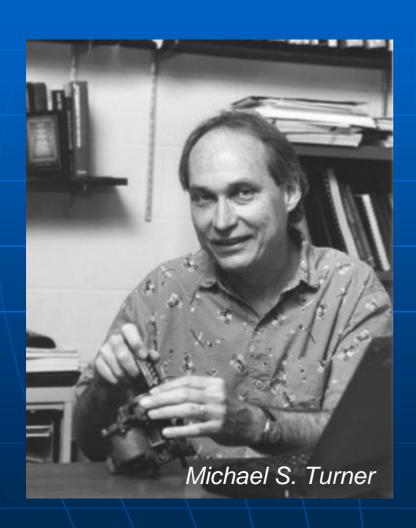
- Pionier dynamischer Universen
- 1922: Entdeckung der Friedmann-Gleichungen
- Friedmann-Modell: $\Lambda = 0, k = +1 \text{ oder } -1, p = 0$
- später: pulsierende Universen mit Λ < 0


Geburt des Raums

- 1925: Entdeckung eines expandierenden Kosmos als Lösung der Feldgleichungen
- $\Lambda > 0, k = +1$
- Friedmann-Lemaître-Modell
- Geburt des Raums (Nature 1931), "Vater des Urknalls"

Bildquelle: www.holoscience.com/

Galaxienflucht



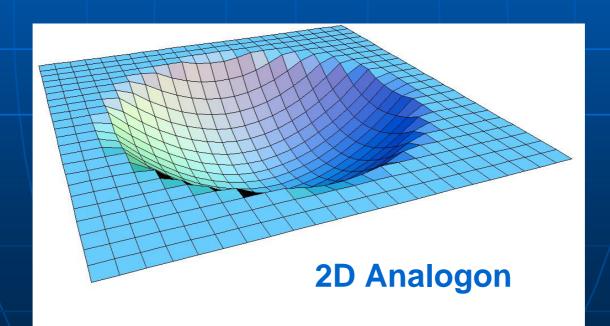
- 1929: empirischer Befund der Fluchtbewegung von Galaxien
- Hubble-Gesetz:

$$cz = H_0D$$

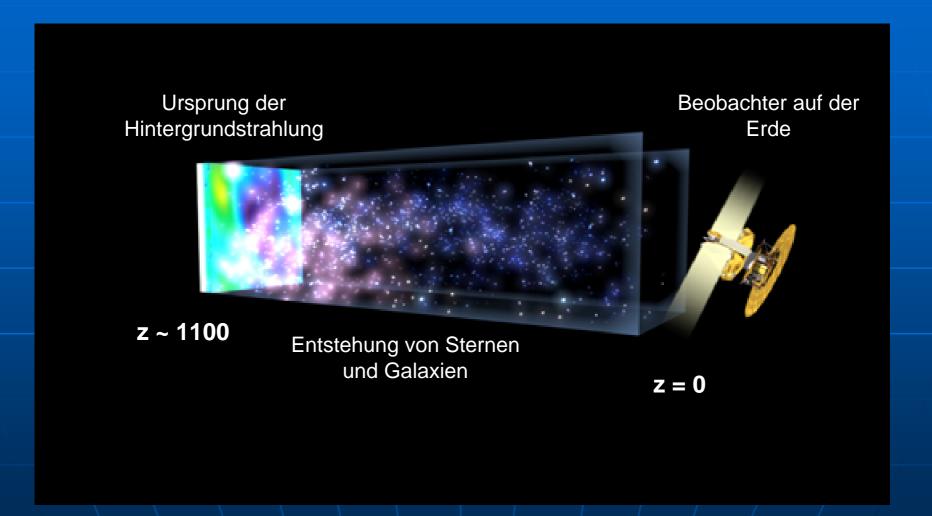
- gültig bis z ~ 0.1 bzw. 420 Mpc)
- Hubble-Konstante
 H₀ = 72 km/s/Mpc ist Maß für Expansionsgeschwindigkeit des Kosmos

Dunkle Energie

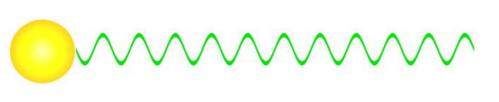
- Rückkehr der kosmologischen Konstante in die moderne Kosmologie
- erfand 1990 den Begriff
 Dunkle Energie (dark energy)


Grundlagen der Kosmologie

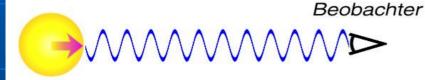
Einsteins Raumzeit


klassische Mechanik

Relativitätstheorie


$$3 + 1 = 4$$

Blick zurück

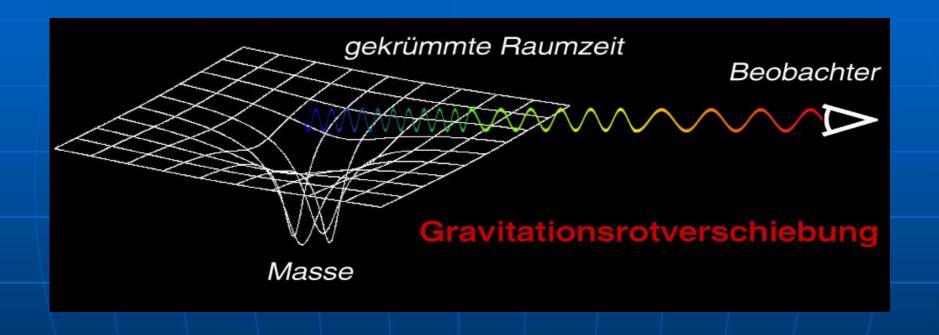

Doppler-Effekt

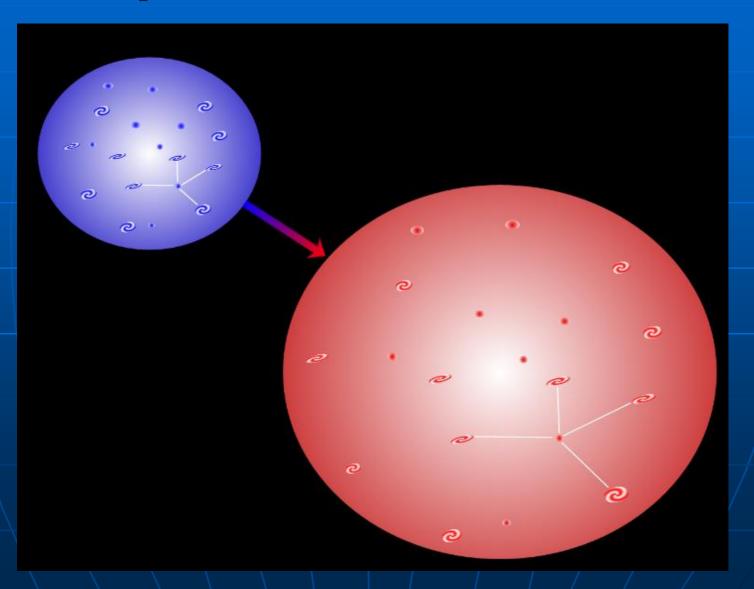
Mitbewegung

keine Verschiebung (Ruhewellenlänge)

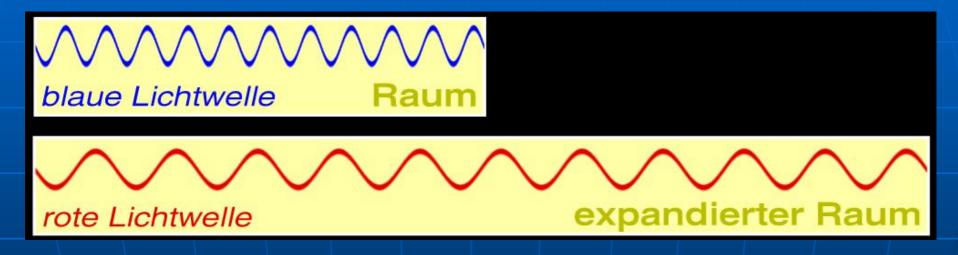
Lichtquelle

relative Annäherung


Blauverschiebung


relative Wegbewegung

Rotverschiebung


Fallendes Licht

Expandierender Raum

Gedehntes Licht

Rotverschiebung

Expansion des Universums, wichtig auf großer Raumskala, Kosmologie!

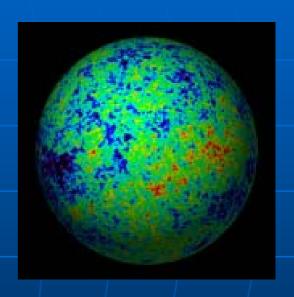
reiner Bewegungseffekt, nur lokal wichtig (Andromedagalaxie)

wichtig bei starken Gravitationsfeldern, z.B. Schwarze Löcher, Neutronensterne

Dunkle Materie

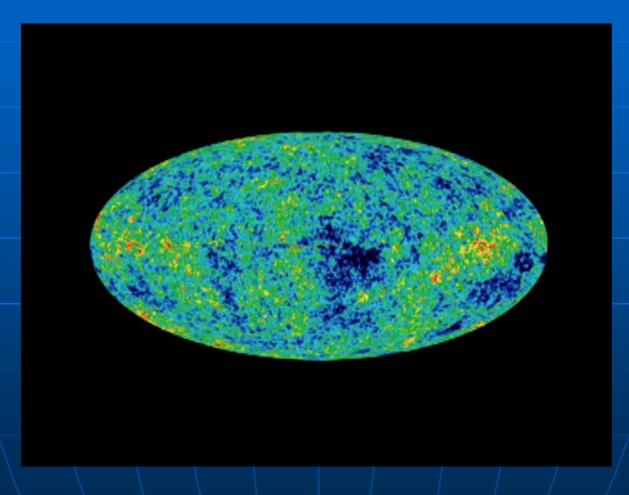
- zusätzliche Materieform, Natur unklar!
- wechselwirkt schwach, aber nicht elektromagnetisch
- gefordert zur Klärung der Stabilität des Coma-Haufens bestehend aus 800 Galaxien (Zwicky 1933)
- gefordert zur Klärung des Rotationsverhaltens von Galaxien (Rubin 1960)
- Astroteilchenphysik: WIMPs (weakly interacting massive particles)
- supersymmetrische DM ($Dark\ SUSY$), z.B. leichtester Kandidat: Neutralino χ mit 520 GeV
- Spektrum kosmischer Strahlung: "Knie" aus WIMP-Vernichtungsstrahlung?

Gravitationslinsen


Beobachtung

Kosmische Hintergrundstrahlung

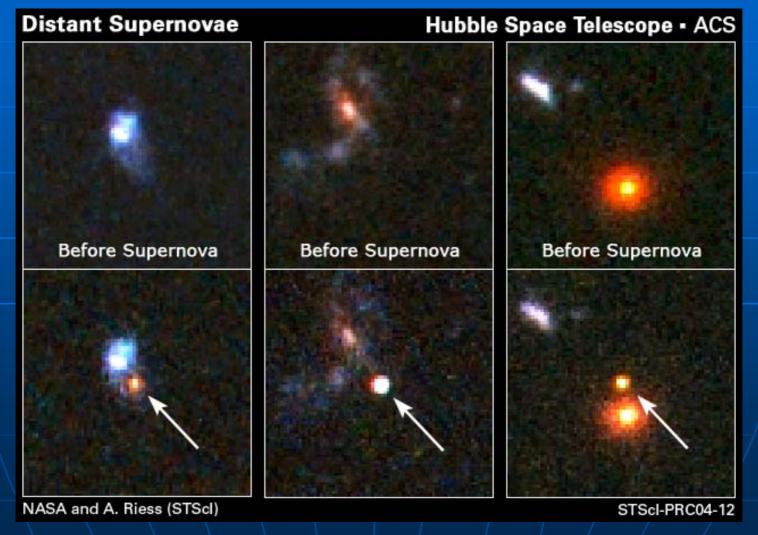
- Theoretisch vorhergesagt 1950 (Hoyle) und 1956 (Gamov): Wärmestrahlung des heißen Urplasmas des kleinen und jungen Universums
- 1965 von Penzias & Wilson per Zufall entdeckt (Nobelpreis 1978)
- Relikt aus prähistorischer Zeit: z ~ 1100
- Alter des Kosmos: 380 000 Jahre
- Das Älteste, was Menschen messen!
- stark rotverschoben im lokalen Universum: Drei-Kelvin-Strahlung (*Planck-Strahler*)


Kosmische Hintergrundstrahlung

- Karte der Hintergrundstrahlung zeigt: Universum ist isotrop, viel mehr als blauer Himmel an einem sonnigen Tag!
- Aber: geringe Schwankung im Bereich von 10⁻⁵ Kelvin wegen ersten Strukturen: inhomogene Dunkle Materie
 ⇒ Schwingungen im Urplasma
- bestens vermessen mit COBE, WMAP, BOOMERANG, MAXIMA, ...
- aktuell: Polarisation, Sunyaev-Zel'dovich-Effekt

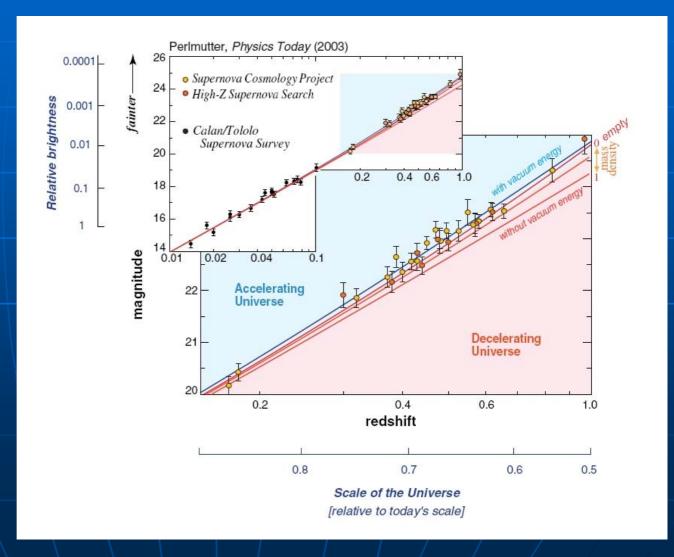
WMAP Website

Himmelskarte der Urstrahlung


rot: wärmer blau: kälter

WMAP Website

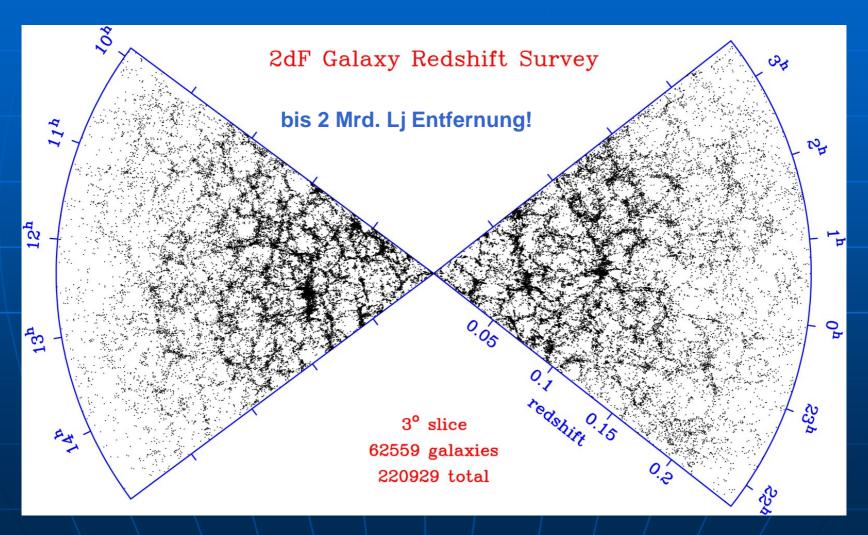
Supernovae la


- SN Ia: explodierende Weiße Zwerge (WDs)
- gute Standardkerzen: Maximalmasse eines WDs ist 1.46 M_☉ (*Chandrasekhar-Masse*)
- fällt mehr Masse (z.B. von einem Begleitstern) auf den Zwerg, so explodiert er als Wasserstoffbombe
- immer etwa gleiche absolute Helligkeit!
- gute Meilensteine im Kosmos zur Zuordnung Rotverschiebung ⇒ Distanz

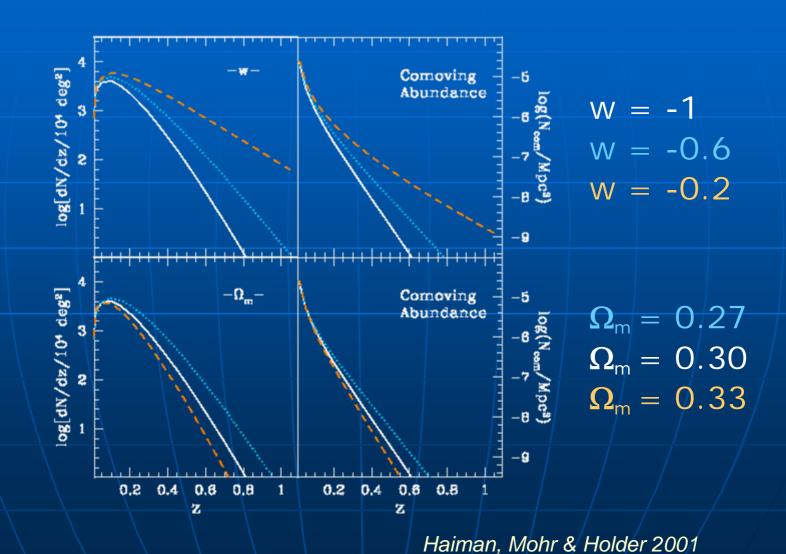
Supernovae la

Hubble-Diagramm mit Sternexplosionen

- große z: Zusammenbruch der Linearität!
- Kurve beschränkt kosmologische Parameter

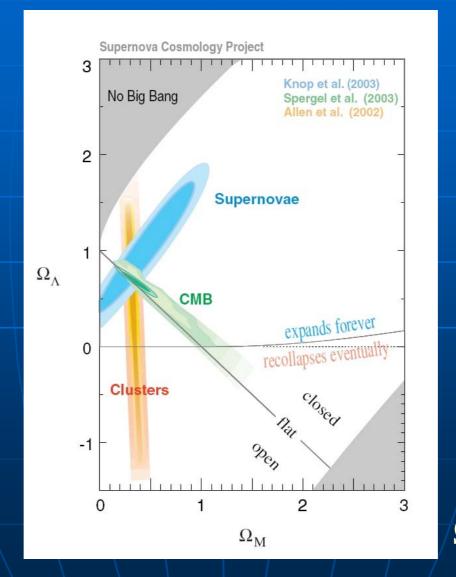


Bildquelle: SCP Website, http://www-supernova.lbl.gov/

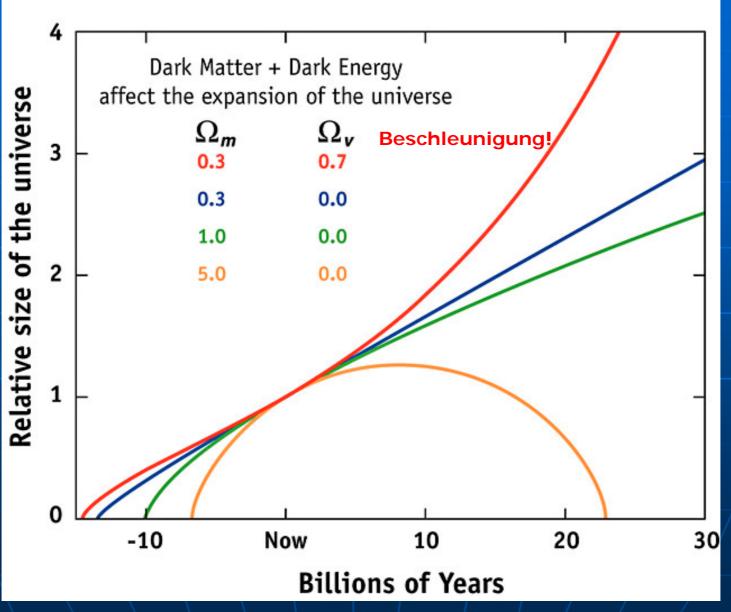

Galaxienhaufen

- Idee: räumliche Verteilung der Galaxien hängt von kosmologischen Parametern ab
- Werkzeug: langbelichtete Beobachtungen, vor allem mit Röntgenteleskopen (X-ray deep surveys), liefern Galaxienverteilung
- Resultat: Messung beschränkt
 - \triangleright Dichteparameter Ω 's,
 - Parameter der Zustandsgleichung w,
 - dessen zeitliche Entwicklung dw/dz

räumliche Galaxienverteilung


Galaxien enthüllen Universum

Kosmische Zutaten



Bildquelle: SCP Website

 $\Omega_{\rm m}$ ~ 0.3

EXPANSION OF THE UNIVERSE



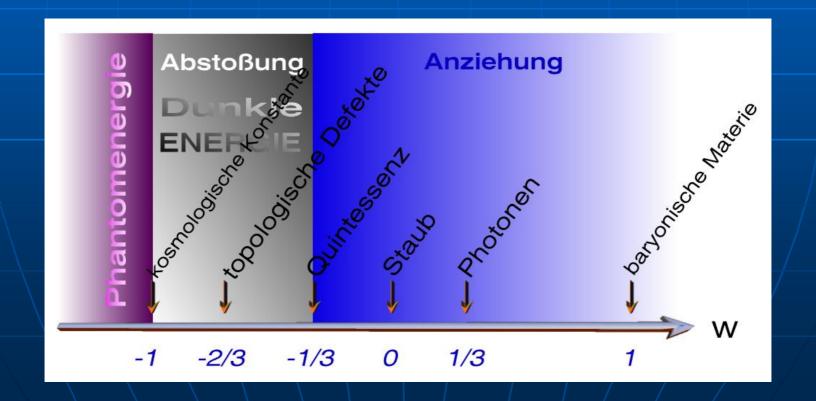
Standardmodell der Kosmologie

- Ω_{Λ} ~ 0.73, dominante Dunkle Energie
- $\Omega_{\rm m}$ ~ 0.23+0.04 = 0.27, großer Anteil Dunkler Materie, aber gewöhnliche (baryonische) Materie "kosmisch irrelevant"
- $H_0 = 72 \text{ km/s/Mpc}$, Hubble-Konstante
- $\Omega_k \sim 0$, flaches Universum: Euklidische Geometrie
- ACDM: flat cold dark matter dominated Universe
- Säulen: CMB, SN Ia, LSS, Nukleosynthese, Alter

Woody Allen

"If the Universe is expanding, why can't I find a parking space?"

Formen Dunkler Energie


Parameter w

$$w = \frac{p}{\rho c^2}$$

Dunkle Energie:
negativer Druck!

Antigravitation

⇒ kosmische Beschleunigung

kosmologische Konstante

- EinsteinTM
- keine zeitliche Entwicklung der Dunklen Energie (unabhängig von Rotverschiebung)
- 10⁻²⁹ g/cm³ Dichte; assoziiert mit dem Quantenvakuum?
- W = -1
- aktuell von astronomischen Beobachtungsdaten favorisiert!

Quintessenzen

- mathematisch: Skalarfeld
- physikalisch: extrem leichtes Teilchen
- Motivation: Kleinheit von A, Koinzidenzproblem
- Lösung: sich zeitlich entwickelnde Dunkle Energie (abhängig von Rotverschiebung), die inhomogen den Raum ausfüllt
- mittlerweile viele Ausprägungen:
 Cosmon (~10⁻³³ eV), Radion, Spintessenz, k-Essenz,...
 erweitere Quintessenz: Kopplung an die Krümmung
- w = -1/3
- nicht ganz ausgeschlossen, aber aktuell wenig Unterstützung von Beobachtungen!

topologische Defekte

- ebenfalls ein Skalarfeld
- Feld verknüpft mit spontanen Symmetriebrechung (vgl. Higgs-Teilchen)
- im Innern der Defekte: Erhaltung der Symmetrie
- beobachtbar als Anisotropien in der Hintergrundstrahlung
- W = -2/3
- ebenfalls nicht ganz ausgeschlossen, aber bislang keine Evidenz: Zerstörung der topologischen Defekte durch Ausdünnung wegen Expansion?

Phantomenergie

- ungewöhnlicher Ansatz (Caldwell 1999)
- zeitabhängige, drastischste Form Dunkler Energie, die erst sehr spät wichtig wird
- Expansionsrate nimmt zu!
- w < -1 (super-negative Zustandsgleichung)
- nicht ganz ausgeschlossen durch Fehlerbalken des w-Parameters (w = -0.78....-1.22)
- Big Rip: Universum endet im totalen Zerriss!
- Beispiel: w = -1.2 ⇒ Big Rip in 50 Mrd. Jahren!
- Nebeneffekt: Produktion ultrahochenergetischer Teilchen ⇒ in Widerspruch mit Beobachtung kosmischer Strahlung

Chamäleon-Feld

Bildquelle: Saxifraga/Sytske Dijksen

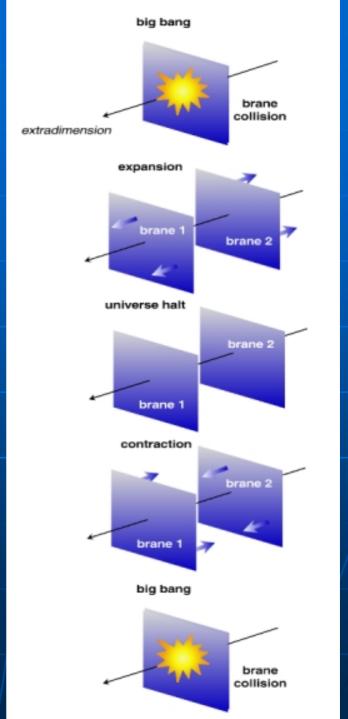
- 2003 von Khoury & Weltman geprägt
- auch ein sich zeitlich entwickelndes Skalarfeld
- Chamäleon-Effekt: Teilchenmasse abhängig von lokaler Materiedichte: hohe Dichte (Erde) ⇒ hohe Teilchenmasse ⇒ Verletzung des ÄP unterdrückt
- bisher konsistent mit Tests der ART
- Vorhersagen:
 - variable Gravitationskonstante G,
 Feinstrukturkonstante α
 - Verletzung des Äquivalenzprinzips
 - schnelleres Wachstum kleiner Strukturen als ΛCDM

Chaplygin-Gas

- erfunden von Chaplygin für Aerodynamik
- $p = -A/\rho$, Konstante A > 0
- <u>früh:</u> Verhalten wie Staub (materiedominierter Kosmos)
- spät: Verhalten wie perfekte Flüssigkeit mit negativem Druck ⇒ bewirkt auch beschleunigten Kosmos
- attraktiv: Entwicklung von staubdominiertem Universum zu de-Sitter-Universum
- Problem: Gravitationskollaps erschwert! $(c_s = c)$
- erweitertes Chaplygin-Gas A → A(a) (dark fluid)

Alternative I: klassische ART ohne Dunkle Energie

- Strukturbildung: Ausbildung von Inhomogenitäten
- kein breiter Konsens, aber aktuelles Forschungsgebiet
- doch Einsteins Eselei


Alternative II: neue Gravitationstheorie

- Branenwelten und Stringtheorien haben mehr als drei räumliche Dimensionen der ART: Extradimensionen
- unser Universum liege auf einer 3-Bran, eingebettet in höherdimensionales Gebilde (bulk)
- Branen-Theorien (z.B. Dvali-Gabadadze-Porrati Branenwelt) verhalten sich auf großer Skala wie ART
- genaue Anzahl weiterer Dimensionen unklar, aber evt. am CERN (LHC 2007) zu testen
- weitere Gravitationstheorie: Loop-Quantengravitation

Zyklisches Universum

- kosmischer Unfall:
 Kollision zweier Branen
- Gegeneinanderschwingen verursacht ein neues Skalarfeld: das Radion
- Eine Bran: unser Vorläuferuniversum
- spekulativ! wie testen?
- aber attraktiv:<u>Ursache</u> für den Urknall

(Steinhardt & Turok 2001)

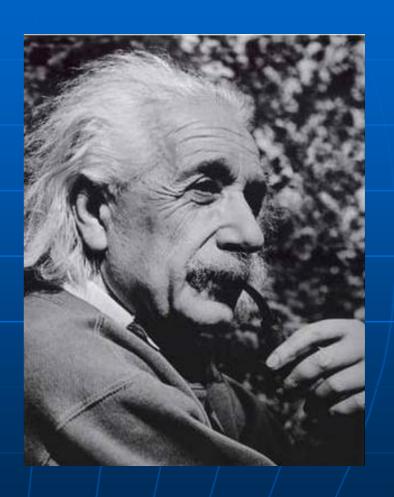
Zukunft des Universums

Zukunft des Universums

eigentlich unklar!

aktueller Konsens:
 ewige Expansion mit Auskühlen
 Big Whimper: kalter, dunkler Kosmos

- Alternativen:
 Big Rip (Phantomenergie)
 Big Crunch (Quintessenzen) oder
 Zyklisches Universum (Radion)
- philosophisch attraktiv: wiederkehrendes, pulsierendes Universum


Klar gibt es Lammda!

Bildquelle: www.wuerzburg.de

Einstein

"Das Schönste, was wir erleben können, ist das Geheimnisvolle."

Bildquelle: Web, www.art.com/.../ Einstein_Great_Spirit.htm

Weitere Informationen

Website Andreas Müller

Vorträge: <u>www.mpe.mpg.de/~amueller/astro_ppt.html</u>

Web-Lexikon: www.mpe.mpg.de/~amueller/glossar.html

- Website des Satelliten WMAP: http://map.gsfc.nasa.gov/
- Publikation: Bean, Carroll & Trodden 2005, astro-ph/0510059.
- Buch von H. Lesch & J. Müller (2001): "Kosmologie für Fußgänger"
- Kosmologie-Vorlesungsskripte:
 - M. Camenzind (Landessternwarte Heidelberg): http://www.lsw.uni-heidelberg.de/users/mcamenzi/CosmoVorl.html
 - M. Bartelmann (Institut für Theoretische Astrophysik, Heidelberg): http://www.ita.uni-heidelberg.de/~msb/Lectures/cosmology.pdf