An introduction to

brane world cosmology

Andreas Müller
Theory group LSW

Advanced seminar LSW Heidelberg 03/03/2004

Overview

- principles
- bulk and brane
- extradimensions
- compactification
- ADD vs. Randall-Sundrum
- scalar fields
- brane collisions
- ekpyrosis and cyclic universe

Standard cosmology

- GR world is 4D manifold: space-time
- Robertson-Walker metric
- A cosmology
- cosmological constant, dark energy
- ACDM in a flat, expanding universe
- FRW equations
- Hubble constant
- inflation
- Big Bang

Motivation to brane world

coincidence problem:

```
\Omega_{\Lambda} \sim \Omega_{\rm m} solution: \Lambda becomes dynamical quintessence models (QCDM), brane worlds
```


Extradimensions and brane worlds

- extradimensions (XDs):
 - ~1920: Nordström, Kaluza-Klein
 - ~1990: renaissance in QFT, SUSY; Antoniadis
- implications from string theories and M-theory: compactified extradimensions
- count XDs in particle accelerator black holes?
- standard model of particle physics is confined on a hypersurface, the **brane**
 - (etymology from *membrane* by *Paul Townsend: p-brane has dimension p*)
- brane is embedded in higher-dimensional space, the bulk

Bulk – brane topology

Brane world zoo

- number of extradimensions
- compactification vs.non- compactification
- flat vs. warped bulk geometry
- number of branes
- static vs. dynamical branes (brane collisions)
- vacuum bulk vs. bulk scalar fields

Supersymmetry

SUSY mirror creates particle zoo

String theory

- 5 supersymmetric string theories connected via dualities hint for
 M-theory
- 11D supergravity (SUGRA) connects GR with SUSY
- SUGRA is low-energy limes (I >> I_{PI}) of M-theory and therefore all string theories
- 11D SUGRA has 11th dimension compactified on an orbifold (with Z₂ symmetry)
- boundaries of 11D space-time are 10D "planes"
- on planes E₈ gauge groups confined
- Calabi-Yau threefold represents compactified space of 6 dimensions of 11D ("microscopic ball")
- heterotic string theory E₈ x E₈ results in brane world (Horava & Witten 1996)

String theory: ADD model

- motivation for 5D space-times with 4D boundary branes
- ADD scenario: large extradimensions (LXDs)
- flat bulk geometry 4+d
- d compactified extradimensions
- reduced Planck scale:

$$M^2_{P,ADD} = M^{2+d}_{fund}R^d$$

 M_{fund} : 4+d Planck scale

radii < R: non-Newtonian gravity</p>

Newton's law modified

- SM restricted to brane, gravity propagates into bulk
- extradimensions compactified to radius R
- 1st implication: Newton 1/r² injured for radii ~ R
- tests with Cavendish experiments show no evidence up to now
- if LXD exist, then R << 1 mm

2-brane system

hypersurface: $D_{brane} = D_{bulk} - 1$

Randall-Sundrum I model

- 2-brane system
- warped (curved) bulk geometry 4+d
- bulk metric is slice of Anti de Sitter (AdS₅) space-time,
 Λ < 0, 5D:

$$ds^{2} = e^{-2K(y)} \, \eta_{\mu\nu} \, dx^{\mu} \, dx^{\nu} + dy^{2}$$

- new: restauration of Newton's law on brane with positive tension embedded in infinite LXD!
- solution of the hierarchy problem

(10¹⁹ GeV Planck vs. 100 GeV electroweak):

2-brane model (RSI)

Randall-Sundrum I model

remark: branes are Minkowski-flat

Randall-Sundrum I model

- highly-curved AdS background
 - implies large gravitational redshift of energy-scale between branes
- hierarchy due to large inter-brane distance r_c
- Planck scale (on negative tension brane) is reduced to TeV:

```
M_{P,RS}^2 \sim exp(2kr_c) M_5^3/k, k = (-\Lambda_5 \kappa^2_5/6)^{1/2} \Lambda_{5:} 5D negative cosmological constant on bulk \kappa_{5:} 5D gravitational coupling constant M_{5:} 5D Planck mass
```

- fine tuning problem:
 - radius of LXD, r_c, tunes hierarchy scale
- radion as bulk scalar field (later!)

Randall-Sundrum II model

- AdS background
- send negative tension brane to infinity
- effectively non-compact 1-brane model
- contrast to KK (all XDs compactified):
 gravitational field has continuum of KK modes
- consequence:correction of gravitational force on brane

Randall-Sundrum II model

 modified Newton potential for point masses on the brane

$$V(r) = \frac{G_N m_1 m_2}{r} \left(1 + \frac{l^2}{r^2} + O(r^{-3}) \right)$$

with
$$I^2 = -6/(\Lambda_5 \kappa^2_5)$$

experiments prove I < 1 mm</p>

Randall-Sundrum II model

modified Friedmann equation in 5D

$$H^{2} = \frac{8\pi G}{3} \rho_{M} \left[1 + \frac{\rho_{M}}{2\sigma} \right] + \frac{\Lambda_{4}}{3} + \frac{\mu}{a^{4}}$$

$$\frac{8\pi G}{3} = \frac{\sigma}{18}$$

$$\frac{\Lambda_{4}}{3} = \frac{\sigma^{2}}{36} + \frac{\Lambda_{5}}{6}$$

split in matter and brane tension

- tuning between Λ_5 and σ establishes $\Lambda_4 = 0$
- gravitational constant depends on tension σ
- μ is dark radiation term

Observational constraints

nucleosynthesis

$$\sigma > (1 \text{ MeV})^4$$
,

then classical Friedmann eq. established at z_{nucl}, otherwise abundances significantly changed

Newton's law tests

$$\sigma > (100 \text{ GeV})^4$$
, $\kappa_5^{-3} > 10^5 \text{ TeV}$,

then classical Friedmann eq. established at z_{nucl}, otherwise abundances significantly changed

cosmology

$$\mu$$
 < 0.1 ρ_{phot} ; typically assumed μ = 0

Technical aspects

- start with action (Einstein-Hilbert, ansatz for brane: contains tension)
- derive Einstein equations as EOM, including
 Klein-Gordon equation
- solve this set of equations (integration...)
- deduce bulk metric (AdS, Schwarzschild etc.)
- identify tunings $(\Lambda_5 \sigma \text{relation etc.})$
- discuss resulting cosmology, e.g. modified Friedmann equations, effective cosmological constants...

Bulk scalar field

Bulk scalar field

- up2now: empty bulks
- now: fill bulk with scalar field
- dynamical brane configurations!
- bulk back reaction parametrized by Weyl tensor and loss parameter
- discuss modified Friedmann eq.
- Klein-Gordon eq.: time dependence of scalar field
 - trace of energy-stress tensor on brane
 - gradient of bulk potential
- G becomes time-dependent: G = G(z)
- fine-structure constant has time evolution
- bulk scalar field can play role of quintessence

Scalar field

energy density, pressure, potential energy

$$ho_{\phi}=rac{1}{2}\phi_{,\mu}\phi^{,\mu}+V(\phi), \ p_{\phi}=rac{1}{2}\phi_{,\mu}\phi^{,\mu}-V(\phi).$$

e.g. inflaton

- full evolution described by:
 - modified Friedmann eq.
 - > Klein-Gordon eq.
 - Raychaudhuri eq.
- assume slow-roll regime
- result: brane world effects slow-roll scenarios

Scalar field - inflaton

- in slow-roll regime (1):
 high potential vs. low kinetic energy of scalar field
- high negative pressure drives expansion of universe
- fall into potential well (2): inflation ends, inflaton field oscillates and decays into matter and radiation

$$ho_{\phi}=rac{1}{2}\phi_{,\mu}\phi^{,\mu}+V(\phi)_{,\mu}$$
 $p_{\phi}=rac{1}{2}\phi_{,\mu}\phi^{,\mu}-V(\phi)_{,\mu}$

figure: Steinhardt & Turok 2002

Cosmology of 2-brane systems

- motivation: 1-brane system + scalar field generates naked singularity (bulk singularity, AdS horizon). This can be shielded with 2nd brane.
- bulk scalar field <u>fixes</u> inter-brane distance in RSI model
- consider variable inter-brane distance
- radion: inter-brane distance plays role of scalar field
- small radion field at late times: negative tension brane moves towards bulk singularity and might be destroyed or repelled

Cosmological constant

- observed $\Lambda \sim 0$ invokes extradimension effect
- hierarchy problem reemerges in a fine tuning problem of the inter-brane distance
- self-tuning idea: XD highly curved, but brane stays Minkowski-flat. <u>But:</u> bulk scalar field produces naked singularity. Vanishes with a 2nd brane.
- Friedmann equations modified at high energies $(\rho_m >> \sigma)$ in brane world models:

$$H \sim \rho_m$$

instead of classical 4D:

$$H \sim \rho_{\rm m}^{1/2}$$

Ekpyrotic scenario

- initial state two flat 3-branes: our progenitor universe and a "parallel" universe
- branes approach as mediated by radion field
- in brane collision event kinetic energy is transformed into quarks and leptons
- no big bang singularity!
- finite temperature 10²³ K
- homogeneous and flat universe
- no inflation!
- no magnetic monopole formation (T too small)

Cyclic Universe

- periodic sequences of ekpyrosis
- cycle of big bang, expansion, contraction, big crunch
- scalar field acts as dark energy (precisely quintessence) that accelerates and decelerates
- scalar field has natural geometrical interpretation in string theory

The Cyclic Universe big bang brane collision extradimension expansion brane 1 brane 2 universe halt brane 2 brane 1 contraction brane 2 brane 1 big bang collision

Cyclic Universe

- (1) E_{pot} dominant
- (2) roll to well due to universe expansion and cooling
- (3) E_{pot} = 0, E_{kin} dominates universe, expansion decelerates
- (4) E_{pot} < 0, contraction
- (5) acceleration out of the minimum, scale factor zero: "crunch"
- (6) reheating of universe from kinetic energy conversion into matter and radiation
- (7) rush back

Brane Worlds – συν–οΨις

- existence of extradimensions
- $\Lambda = 0$ on the brane easily managed
- impact of brane cosmology on early universe $H \sim \rho_m$ instead of $H \sim \rho_m^{1/2}$
- dark energy, quintessence represented by scalar field
- ekpyrosis: 1st explanation of big bang!
- universe may evolve in cycles

Open questions

- effects of bulk gravitation on CMB and LSS
- boundary conditions on the brane
- variations of the bulk scalar field around the brane
- bulk scalar field as dark energy constituent
- shielded bulk singularity
- singularity problem in brane collisions

Cosmology news

- W = p/ρ = -1 Einsteins cosmological constant Λ high-z SN Typ Ia permanence measurements (Riess et al., February 2004)
- distance ladder
 z ~ 7 lensed IR galaxy
 (Kneib et al., February 2004)
 - **Z** ~ **10** lensed IR galaxy Abell 1835 IR 1916 lens magnification factor 25-100, 5 x 10 8 M $_{\odot}$, ISAAC/VLT (*Pello et al., March 2004, astro-ph/0403025*)

References

- Brax & van de Bruck, "Cosmology and Brane Worlds: A Review" (2003), hep-th/0303095
- Arkani-Hamed, Dimopoulos & Dvali, Phys. Lett. B 429, 263 (1998), hep-th/9905221 (ADD scenario, LXD)
- Randall & Sundrum, "A Large Mass Hierarchy from a Small Extra Dimension" (1999), hep-th/9905221 (RSI model)
- Randall & Sundrum, "An Alternative to Compactification " (1999) , hep-th/9906064 (RSII model)
- Khoury, Ovrut, Seiberg, Steinhardt & Turok, Phys. Rev. D 65, 86 (2002), hep-th/0108187 (ekpyrotic model)
- Steinhardt & Turok, Phys. Rev. D 65, 126 (2002), hep-th/0111030, hep-th/0111098 (cyclic model)
- M. Cavaglia, "Black Hole and Brane Production in TeV Gravity: A Review" (2002), hep-ph/0210296
- H. Goenner, "Einführung in die Kosmologie" (2000), Spektrum Verlag

Abbreviations and Acronyms

- ADD: Arkani-Hamed, Dimopoulos & Dvali model
- AdS: Anti de Sitter space-time
- BH. Black Hole
- CMB: Cosmic Microwave Background
- D: Dimension
- EOM: Equation of Motion
- FRW: Friedmann-Robertson-Walker
- GR. General Relativity
- GW: Gravitational Wave
- KGE: Klein-Gordon Equation
- KK: Kaluza-Klein
- ΛCDM: Λ cosmology with cold dark matter
- LSS: Large Scale Structure
- LXD: Large Extra Dimension
- QCDM: quintessence cosmology with cold dark matter
- QFT: Quantum Field Theory
- RSI: Randall-Sundrum model I
- RSII: Randall-Sundrum model II
- SM: Standard Model of Particle Physics
- SUGRA: supergravitation
- SUSY: supersymmetry
- XD: Extra Dimension

